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1. Introduction 

The ultra-wideband (UWB) radar technology has emerged as a promising solution to a variety of 

sensing scenarios that involve short ranges, low average power, good resolution, and the ability 

to penetrate materials. Among the successful applications are ground penetrating radar (GPR), 

foliage penetrating (FOPEN) radar, and sensing through the wall (STTW) radar. The 

Synchronous Impulse Reconstruction (SIRE) radar (1), designed and built at the U.S. Army 

Research Laboratory (ARL), is an example of this technology. In its main operational mode, it 

produces high-resolution images of stationary targets while the platform is in slow motion. In 

this study, we investigate whether this type of radar can also be used to estimate the velocity of a 

moving target via Doppler processing when the platform is stationary. 

Traditional Doppler analysis with pulsed radar uses narrowband pulses, which are sampled and 

processed coherently over a certain time interval (2). Although the definition of narrowband 

versus wideband pulses is relative, for our purpose, a pulse is considered narrowband if, during 

the coherent processing interval (CPI), the moving target stays within the same range resolution 

cell. 

Recently, several papers (3–4) examined the possibility of performing Doppler analysis of a 

moving target using UWB (or, equivalently, high range resolution) waveforms. However, these 

investigations do not make any mention of the Doppler domain resolution that their methods can 

achieve. The study presented in this technical note attempts to establish the theoretical Doppler 

resolution and other performance limits for UWB radar. 

The technical note is organized as following: section 2 discusses aspects of Doppler processing 

with UWB pulses, section 3 presents a simple numerical example, and section 4 offers 

conclusions. 

2. Doppler Processing with UWB Pulses 

2.1 UWB Pulses 

In this work, we focus our attention on the processing of UWB impulses. These are impulses of 

very short duration (of the order of nanoseconds), with spectra ranging from near-direct-current 

(DC) to several GHz (typically they are used in relatively low-frequency applications, up to 

about 3 GHz [1]). Although the definition of an UWB pulse may vary from author to author, the 

common characteristic of these pulses is a large bandwidth-to-center-frequency ratio, of the 

order of unity. In terms of modulation, we distinguish two different types of UWB pulses: 
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unmodulated or baseband pulses (generated directly in the transmission band, as in reference 1), 

and modulated around a carrier frequency (such as the pulses used in reference 3). 

A typical family of baseband (unmodulated) UWB waveforms is that of Rayleigh pulses (5), 

which may have different orders. Figure 1 plots the 4
th

 order Rayleigh pulse in the time domain 

(figure 1a) and its spectrum magnitude (figure 1b). The red line in the time-domain plot outlines 

the pulse envelope (6). The mathematical expression of this pulse in the time domain is (5) 
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Notice that the Rayleigh pulse spectrum  fP  is asymmetric, so we cannot speak about a “center 

frequency.” Instead, we characterize this spectrum by the frequency of its peak, f0. Interestingly, 

the bandwidth is also determined by f0 (the 6 dB bandwidth can be expressed as 05.1 fB  ), so 

only one parameter completely characterizes the pulse. Other types of baseband UWB 

waveforms include the Gaussian pulse and its derivatives (of first or higher order). The spectra of 

the Gaussian-derivative pulses look similar to those of the Rayleigh pulses and likewise, they are 

completely characterized by one parameter (f0).  

         

(a)                                                                                            (b) 

Figure 1.  Representation of the 4
th

 order Rayleigh pulse in (a) time domain and (b) frequency domain. The red 

curve in the time domain shows the pulse envelope. 

Note: All the frequency domain magnitude plots in this report use a linear scale. 

Modulated UWB pulses involve a carrier of relatively low microwave frequency, which is 

amplitude-modulated by an envelope with a short-pulse shape. Typically, only a few cycles of 

the carrier are transmitted with each pulse. A typical example is a Gaussian-modulated sinusoid, 

which is represented in figure 2, and can be written as 



 

3 

      tfetp
t

02cos
2

0 
 . (2) 

Notice that the spectrum of this pulse  fP  is symmetric and centered at f0 (which can now be 

called center frequency). The bandwidth is determined by the 0 parameter according to 

02

1


B (for the 6 dB bandwidth), while the total pulse duration is 

B

1
2 0   . As compared 

to the baseband UWB pulses, a modulated pulse is characterized by two parameters, 0 and f0. 

         

(a)                                                                                               (b) 

Figure 2.  Representation of a Gaussian-modulated sinusoid in (a) time domain and (b) frequency domain. The red 

curve in the time domain shows the pulse envelope. 

For reference, a narrowband pulse can be mathematically expressed as a sinusoid containing 

amplitude and phase modulation (2): 

       ttftAtp   02cos . (3) 

Notice that a modulated UWB pulse can be described by the same mathematical expression as a 

narrowband pulse; however, we cannot reduce a baseband UWB pulse to an expression similar 

to equation 3. Therefore, the processing of these pulses requires a different type of mathematical 

treatment than conventional radar pulses. 

2.2 Doppler Processing with Baseband UWB Pulses 

This section shows the principle of Doppler processing that takes place in an UWB radar 

receiver and illustrates the processing chain with simple diagrams. The following simplifying 

assumptions are made: (1) there is only one point-like target, moving towards the radar at 

constant, positive radial velocity v, and placed at a range that is large enough such that the 

amplitude of the radar echoes does not vary from pulse to pulse; (2) the received pulse has the 

same shape as the transmitted pulse; and (3) no noise is present in the received signal. In 

addition, we make the reasonable assumption that the pulse repetition frequency (PRF) is large 
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enough to avoid any aliasing in the Doppler domain (2). In this section, we choose the 4
th

 order 

Rayleigh pulse to illustrate the method; however, this applies more generally to any baseband 

(unmodulated) pulses that can be written as    tfptp 0  (where t and f0 always appear together 

as a product). 

The analog part of an UWB radar receiver is in principle very simple and includes radio-

frequency (RF) filtering and amplification. No pulse compression is required in such a receiver, 

since the range profile is simply the envelope of the received signal. If the pulse is already in 

baseband, no demodulation is required either. This signal is sampled directly at a rate greater or 

equal to the Nyquist rate (7) and digitized (issues related to the limited speed of analog-to-digital 

converters and ways to circumvent these limitations (1) are not discussed here). We assume in 

the following that the sampling rate is close to the Nyquist rate, such that each sample 

corresponds to a range bin (2). 

The Rayleigh pulse shown in figure 1 corresponds to the in-phase signal component. For 

Doppler processing, we need to obtain the complex envelope of this waveform (6), whose real 

part consists of the in-phase component already mentioned, while its imaginary part is the 

quadrature component. The latter is computed via a discrete Hilbert transform (7) of the in-phase 

component. 

The following symbols will be used in this and the following section: 

t –fast time (in general) 

 – pulse duration in fast time 

Tr – pulse repetition interval 

s – pulse duration in slow time 

0 – pulse width parameter for modulated pulses 

0d – pulse width parameter in the Doppler domain (modulated pulses) 

CPI – coherent processing interval 

t – time shift between two pulses caused by the target motion 

R – range 

R0 – target range for the first pulse in the sequence 

R – range displacement corresponding to t 

f – frequency (in general) 

f0 – frequency of the pulse spectrum peak (center frequency for modulated pulses) 
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B – pulse bandwidth 

f0d – frequency of the peak in the Doppler domain 

Bd – pulse bandwidth in the Doppler domain 

fr – pulse repetition frequency 

v –radial velocity of the target 

c – speed of light 

f – Doppler frequency resolution 

v – velocity resolution 

R – range resolution 

We can rearrange the data samples in a two-dimensional (2-D) array, where each row is a range 

profile associated to a transmitted pulse. Thus, the row index corresponds to pulse number n 

(associated with its receiver turn-on time nTr), while the column index corresponds to a sample 

number within a range profile. The time corresponding to range on the horizontal axis is called 

“fast time” (2), since it is measured on a scale comparable to the individual pulse duration. The 

time on the vertical axis is known as “slow-time,” because it is measured on a scale comparable 

to the pulse repetition interval Tr. The 2-D data array is shown in figure 3, where the magnitude 

of the complex envelope is represented in dB on a pseudo-color scale. 

 

Figure 3.  Representation of the 2-D received data array obtained by arranging  

the range profiles associated to each transmitted pulse by rows. 



 

6 

We compute the Doppler spectrum of the received pulses as in conventional pulsed Doppler 

radar by taking the discrete Fourier transform (DFT) over samples in successive range profiles 

corresponding to the same range bin (column-wise in the 2-D data array). The process is 

illustrated in figures 4 and 5. Thus, in figure 4, we show a number of overlapping received pulses 

on the same fast-time axis and the sampling time t on this axis, corresponding to the range bin 

2

ct
R  . The pulse amplitude values at this sampling time (or range bin) are rearranged as in 

figure 5a, which shows the pulse samples in the slow-time domain for the in-phase component. 

After computing the quadrature component (figure 5b), one can obtain the samples of the 

complex envelope in slow time, whose DFT represents the Doppler spectrum (figure 5c). Notice 

that, for each pulse, the fast-time origin is the turn-on time of the receiver (the left side column of 

the 2-D array in figure 3), whereas the slow-time origin corresponds to the first pulse in the 

sequence (the bottom side row of the 2-D array in figure 3). 

 

Figure 4.  Sequence of overlapped received pulses in the fast-time domain illustrating  

the sampling procedure for Doppler processing. 

Next, we need to derive an expression for the Doppler spectrum. As a reminder, the common 

assumptions made for narrowband pulses do not apply in the case of unmodulated baseband 

pulses, including the concept of a frequency deviation (Doppler shift) caused by the target 

motion. In reference to figure 4, the time shift between two successive pulses caused by the 

target motion is 

 
r

r

cf

v

c

vT

c

R
t

222



 . (4) 
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(a)                                                                                               (b) 

 

(c) 

Figure 5.  Representation of the sampled waveforms in the slow-time domain and their associated Doppler 

spectrum, showing (a) in-phase component in the slow time domain, (b) quadrature component in the 

slow time domain, and (c) spectrum in the Doppler frequency domain. These plots correspond to a 4
th

 

order Rayleigh pulse at transmission. 

Now consider the sampled pulse  ns  in the slow-time domain (figure 5a), with sampling 

interval Tr. By using the diagrams in figures 3 and 4, as well as equation 4, we can establish the 

following expressions: 

   
















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c

v
nT

c

R
tptn

c

R
tpns r

222 00  , (5) 

where  tp  is the fast-time domain expression of the pulse (equation 1). For the sake of the 

argument, we compute the Doppler spectrum in figure 5c via the discrete-time Fourier transform 

(DTFT) (7). (Note: The difference between the DTFT and the DFT is that the former uses a 

continuous frequency variable, whereas the latter uses discrete (sampled) frequencies; extending 
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the proof to the sampled frequency case is straightforward). Thus, the DTFT of the signal in 

equation 5 is 

   










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n

fnTj

r
re
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tpfS

20 22
. (6) 

The sum over n can be extended from - ∞ to ∞, since the pulse amplitude is null outside the data 

window. Now consider the change of variable n
vT

Rct
m
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Since we are interested in the magnitude of  fS , the last exponential factor does not influence 

the result. Moreover, the expression 











m

fmTj

r
remT

c

v
p

22
can be recognized as the DTFT of 

the pulse 







t

c

v
p

2
. Using the well-known scaling property of the Fourier transform (6), we can 

write 

   









v

c
fP

v

c
fS

22
. (8) 

This equation shows that the magnitude of the Doppler spectrum is a replica of the transmitted 

pulse spectrum  fP , with the frequency axis scaled down by a factor 
v

c

2
. Consequently, the 

Doppler spectrum will have a peak corresponding to 

 
c

v
ff d

2
00   . (9) 

The target velocity is estimated by finding the frequency of the Doppler spectrum peak f0d and 

using the equation 

 
0

0

2 f

fc
v d  . (10) 

Notice that this expression is very similar to the estimation of the target velocity in conventional 

narrowband Doppler radar (2), with the difference that f0 does not represent the carrier (or center) 

frequency, but the peak of the transmitted pulse spectrum.  

In practice, the target velocity is estimated at the same time as the range by creating a range-

Doppler map. This is obtained from the original 2-D data array (figure 3) by taking column-wise 
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DFTs. The location of the magnitude peaks in the range-Doppler maps indicate the ranges and 

velocities of the (possibly multiple) targets in the scene.  

One would also need to consider the fact that each DFT is performed over a limited slow-time 

interval (CPI). Therefore, a range-Doppler map gives indications about the target range and 

velocity only for that specific window of time. The target trajectory and velocity changes over 

time can be tracked by creating a succession of range-Doppler maps for different slow-time 

windows (instead of DFT we now talk about discrete short time Fourier transforms [STFT]). 

When we put together all the range-Doppler maps obtained at regular slow-time intervals we 

obtain the so-called joint range-time-frequency representation (JRTFR) data cube (3), which 

indicates the target response as a function of range, slow time, and Doppler frequency (velocity). 

2.3 Doppler Processing with Modulated UWB Pulses 

The Doppler processing chain in the case of modulated UWB pulses largely follows the same 

steps as for baseband pulses. The main difference is that now the model described by equation 3 

is valid, so we can talk about a Doppler frequency shift (call that f0d). The processing in this case 

involves an extra step: demodulation, which consists of multiplying the received signal by 
tfj

e 02
 (in practical implementation, the complex envelope of the received signal is obtained by 

employing a quadrature demodulator [2]).  

If we consider a Gaussian-modulated pulse as described in section 2.1, the sampled, slow-time 

representation of the complex envelope (after demodulation) is 

  



























 c

R

c

v
nTfj

c

v
nT

c

R
t

rr

eens

0
0

2

0
0 22

2
22



 . (11) 

This waveform is shown in figure 6a. Notice that, in this case, we can only represent the 

magnitude of the complex envelope, although a significant part of the Doppler information is 

contained in the phase. To underline this aspect, we preserved the sign of the phase in the slow-

time domain representation (figure 6a). Figure 6b displays the corresponding Doppler spectrum, 

which is given by the DTFT of  ns : 
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Using a similar variable change as in section 2.2, we obtain 
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where je is a non-important phase factor. The remainder of the right-hand term can be 

interpreted as the DTFT of the pulse 

2
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et
c

v
g (where  tg  is the envelope of the 

original modulated pulse), shifted in frequency by 
c

v
f

2
0 . 

         

(a)                                                                                               (b) 

Figure 6.  Representation of the sampled waveform in the slow-time and Doppler frequency domains, showing  

(a) pulse samples and envelope in the slow-time domain and (b) spectrum in the Doppler frequency 

domain. These plots correspond to a Gaussian-modulated pulse at transmission. 

Consequently, the peak in the Doppler spectrum is located at f0d given by 

 
c

v
ff d

2
00  , (14) 

while the slow-time pulse width parameter 0d is 

 
v

c
d

2
00   . (15) 

Notice that, formally, equations 9 and 14 are identical; however, as mentioned in section 2.2, the 

meaning of f0 is different in the two cases. 

2.4 Doppler Resolution and Performance Limits 

The analysis presented in previous two sections did not make any assumption about the CPI, 

except for considering it as very large (compared to the duration of the sampled pulse in slow 

time). In reality, in conventional Doppler radar, the CPI is a critical parameter determining the 

Doppler resolution according to the equation (2) 

 
CPI

1
f . (16) 
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However, the major difference between Doppler processing of UWB and narrowband pulses is 

that, in the former case, the CPI is longer than the slow-time pulse duration (a justification for 

this requirement is presented later in this section), whereas in the latter, the opposite is true. This 

difference is clearly illustrated graphically in figure 7, both in time and frequency domains.  

         

(a)                                                                                               (b) 

Figure 7.  Comparison of Doppler processing using wideband and narrowband pulses, referenced to the length of a 

CPI, showing (a) slow-time domain representation of the pulse envelopes and (b) corresponding Doppler 

spectra. 

Notice in figure 7a that the amplitude of the narrowband pulse envelope does not change much 

over the CPI. Instead, it is the phase variation over that interval that creates the peaks in the 

Doppler domain. As for the UWB pulses, the amplitude variation in slow time conveys  

significant information about the Doppler spectral content.  

The fact that the non-zero data support processed in each STFT for the UWB case is shorter than 

the CPI means that the Doppler frequency resolution will be poorer than the limit given by 

equation 16. Moreover, for faster targets, the slow-time pulse duration is shorter than for slower 

targets, meaning that the Doppler resolution is further reduced as the target velocity increases. 

This is illustrated in figure 7b, which shows the broadening of the Doppler spectrum peak for the 

fast target. It is obvious that two targets with similar velocities would be more difficult to resolve 

in the Doppler domain when the peaks of their Doppler spectra are broad. Also notice that, for 

narrowband pulses, the Doppler resolution is independent of the target velocity. 

We can express the Doppler frequency resolution for UWB pulses as the bandwidth of the slow-

time pulse: 

 
c

vB
Bf d

2
 . (17) 



 

12 

This expression shows that the Doppler resolution becomes poorer (f larger) as either v or B 

increases. The velocity resolution is given by 

 
002 f

vB

f

c
fv   . (18) 

The widening of the Doppler spectrum peak (or loss of resolution) at higher velocities also 

implies that the peak’s magnitude decreases proportionally when the target velocity increases. 

This effect may lead to a lower probability of detection of a fast target that needs to compete 

with either clutter or the sidelobes produced by another target placed nearby on the range-

Doppler map. 

Equation 18 suggests that UWB pulses, which by definition have large 
0f

B
ratios, are in general 

ill-suited for target velocity estimation. Moreover, the velocity estimate resolution is dependent 

on the velocity itself. A possible solution to improve the velocity estimation resolution is to 

increase f0 while keeping B constant. This amounts to modulating a high-frequency carrier (at the 

center frequency f0) with a short baseband pulse. However, this case most likely constitutes a 

departure from the UWB impulse model described in section 2.1.  

Figure 8 explains the reason why the CPI should normally exceed the slow-time pulse duration, 

by comparing the spectrum of a truncated pulse with that of its full-duration version for a 4
th

 

order Rayleigh waveform. If we use a Hanning window (7) in the STFT, the peak in the Doppler 

spectrum of the truncated pulse is slightly displaced with respect to the true peak. If we simply 

use a rectangular window for truncation, the Doppler spectrum exhibits large sidelobes, in 

addition to the peak shift. The effect of these sidelobes in the range-Doppler maps can be 

significant for range bins placed at the edges of the target trajectory over a CPI, hence they 

should be avoided. 

         

(a)                                                                                     (b) 

Figure 8.  Illustration of the slow-time pulse truncation issue for baseband UWB pulses, showing (a) slow-time 

domain representation of the pulse envelope and (b) corresponding Doppler spectra. 
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The bias introduced in the Doppler spectrum peak by time-domain truncation is specific to pulses 

with asymmetric spectra (as in figure 1b) and does not affect waveforms with symmetric spectra 

(as in figure 2b). To demonstrate this, we repeat the previous analysis in figure 9, this time using 

a Gaussian-modulated pulse. We can see that, in the Doppler domain, the three peaks line up at 

the correct frequency. Moreover, the spectrum peak position is independent of the truncation 

window offset relative to the time-domain pulse envelope. The only negative effect is the 

widening of the peak, which is due to the reduced support of the STFT. 

         

(a)                                                                                                (b) 

Figure 9.  Illustration of the slow-time pulse truncation issue for modulated UWB pulses, showing (a) slow-time 

domain representation of the pulse envelope and (b) corresponding Doppler spectra. 

We conclude that truncating the slow-time pulse (by choosing a CPI shorter than its duration) 

introduces a bias in the Doppler frequency estimate for baseband UWB pulses. To avoid this, 

each STFT should use a Hanning (or other smooth) window with an overall extent (between zero 

crossings) of about twice the longest slow-time pulse duration. This leads us to the idea of setting 

the CPI as a function of the minimum velocity of interest in the scene: 

 
Bv

c
s

min

max
2

CPI  . (19) 

Conversely, equation 19 allows us to determine the minimum velocity that can be reliably 

estimated with baseband UWB pulses given a certain value of the CPI. For modulated UWB 

pulses, there is no lower limit on the velocity that can be correctly estimated; however, there will 

be a loss of resolution for velocities below the value derived from equation 19. 

Finally, the Doppler resolution analysis presented in this section allows us to establish a simple 

criterion to distinguish whether a pulse is narrowband or wideband with respect to Doppler 

processing. Specifically, if the target in motion covers less than a range bin during a CPI, then 
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we are in the narrowband regime; if the target covers a distance larger than a range bin during a 

CPI, then we are in the wideband regime. 

3. Numerical Examples 

3.1 Simulation Involving Baseband UWB Pulses 

In this section, we present a simple numerical example obtained via simulation in MATLAB. It 

consists of two point targets moving in opposite directions, with radial velocities v1 = 0.4 m/s 

and v2 = –0.6 m/s (a positive velocity means the target moves towards the radar). The transmitted 

pulse is 4
th

 order Rayleigh, with peak frequency f0 = 1 GHz. The PRF is 40 Hz, while the total 

observation time is 2 s. The effective CPI is 0.6 s, and we use Hanning windows in the STFTs, 

with one slow-time sample shift from one CPI to the next for maximum overlap.  

The original 2-D data array (as a function of range and time) is shown in figure 10, where we can 

see the two trajectories intersecting at one point in time. By performing the Doppler processing 

outlined in section 2.2 we obtain a collection of range-Doppler maps corresponding to successive 

slow-time intervals. Three of these maps, corresponding to time windows centered at 0, 1 and  

2 s, respectively, are shown in figure 11. 

 

Figure 10.  The 2-D received data array as a function of range and time for the simulation  

involving 4
th

 order Rayleigh pulses at transmission.  
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Figure 11.  Range-Doppler maps obtained in the simulation  

involving 4
th

 order Rayleigh pulses, corresponding  

to slow-time windows centered at 0, 1, and 2 s, respectively. 

Notice that, in the range-Doppler maps in figure 11, the target with a larger velocity (in absolute 

value) displays a wider peak in the Doppler domain (poorer resolution). This effect was 

discussed in detail in section 2.4. Interestingly, the range-Doppler map peak corresponding to the 
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higher-velocity target also has a wider extent in range, showing a degradation of the resolution in 

this dimension. This can be easily explained by the fact that, in a UWB pulse regime, the target 

moves over more than one range bin during a CPI; therefore, the peak in the range-Doppler map 

is “smeared” over several original range bins. If the conventional range resolution is given by 

2




c
R  , then, in a range-Doppler map created with UWB pulses, the new range resolution 

becomes 

 RRvR
s

d 


 
CPI

CPI . (20) 

This equation shows that in a range-Doppler map obtained with UWB pulses the range resolution 

is poorer than in the original range profiles, and, moreover, this resolution depends on the target 

velocity (becomes worse for larger velocity). Even so, the range resolution achieved with UWB 

pulses after Doppler processing is better than the resolution achievable with narrowband pulses. 

Figure 12 displays the JRTFR data cube mentioned in section 2.2. The two targets can be clearly 

separated in this picture, which was obtained by displaying only the points in the three-

dimensional space whose magnitude exceeds a certain threshold (in our case, 15 dB). Notice that 

the resolution in both range and time dimensions is not as good as in the original 2-D data array 

(figure 10); however, the advantage of the JRTFR is that it adds a new dimension to the data 

(Doppler frequency), which can be useful in applications requiring target separation, 

discrimination or identification. 

 

Figure 12.  Representation of the JRTFR data cube obtained in the simulation involving 4
th

  

order Rayleigh pulses. 
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3.2 Simulation Involving Modulated UWB Pulses 

We repeat the simulation in section 3.1, this time using a Gaussian modulated UWB pulse for 

transmission. All the parameters are identical to the previous case, except that the pulse has  

f0 = 1.5 GHz and 0 = 500 ps. Since both the 2-D range-time data array and the JRTFR data cube 

look very similar with those in figures 10 and 12, we do not show these results in this section. 

Instead, we only concentrate on the range-Doppler maps, which display some slight differences 

with respect to figure 11. 

Figure 13 plots the range-Doppler maps obtained for time windows centered at 0, 1, and 2 s. 

Similar to the simulation involving a Rayleigh (baseband) pulse, the resolution in poorer for 

larger target velocity, both in range and Doppler (the analysis goes the same as previously, with 

the exception that now, the Doppler peak width is given by the inverse of the 0d parameter). One 

noticeable difference is the fact that the targets have symmetric signatures on these range-

Doppler maps, due to the symmetric nature of the pulse spectrum. Also, as explained in section 

2.4, there are no minimum velocities involved in this type of Doppler analysis, since the 

estimates are unbiased for any velocity down to zero. 
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Figure 13.  Range-Doppler maps obtained in the simulation 

 involving Gaussian-modulated pulses, corresponding 

to slow-time windows centered at 0, 1, and 2 s, respectively. 
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4. Conclusions 

In this note, we investigated the possibility of using UWB radar waveforms to estimate the 

velocity of a moving target. Specifically, we employed both baseband and modulated UWB 

impulses and a conventional range-Doppler map approach to simultaneously estimate the range 

and velocity of the target. As expected, these waveforms achieve excellent resolution in range, 

but poor resolution in the Doppler (velocity) domain. In section 2.4, we established theoretical 

expressions for the Doppler resolution, which degrades proportionally to the target velocity. We 

also found that, for baseband pulses, there is a minimum target velocity below which the Doppler 

domain estimation becomes unreliable (biased). Since the modulated UWB pulses are not 

affected by this issue, they are preferable to the baseband pulses for this type of analysis. 

Although the conclusions of our analysis are mostly negative, it can be said that the technique 

described here can be applied to relatively slowly moving targets, in sparsely populated scenes 

(this would be combined with the requirement of short ranges, inherent to low-average-power 

UWB radar). The discrimination in range (and possibly in cross-range, for radars employing an 

antenna array), which can be performed with high accuracy, may be sufficient to distinguish 

between two targets, even though the Doppler resolution is poor. 

A possible remedy to the poor Doppler resolution was indicated in section 2.4 and consists of 

increasing the “center frequency” f0, without increasing the bandwidth. This amounts to using an 

UWB baseband pulse to modulate a high-frequency carrier (this is the approach used in reference 

4)—in that case, the pulse may not be classified as UWB any longer, but still retains the high 

range resolution property. For example, if one uses a pulse centered at 10 GHz (X band) with the 

same bandwidth as the ones used in section 3 (which were “centered” around 1 GHz), the 

Doppler resolution increases tenfold. 

Yet another possibility to measure the target velocity, which seems more natural for an UWB 

radar operating essentially in the time domain, is to compare the range profiles created at 

different moments in slow time (say, for instance, t1 and t2) and compute the average velocity as 

12

12

tt

RR




. Note that this is a high resolution estimate, since R2 and R1 can be determined with 

high accuracy. If, additionally, one determines the cross-range position of the target as a function 

of time (for instance, via beamforming), this idea can be extended to compute the 2-D velocity 

vector. This is the approach used by Martone et al. (8) to track a person walking inside a room 

via STTW imaging radar. 
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List of Symbols, Abbreviations, and Acronyms 

2-D  two-dimensional 

ARL  U.S. Army Research Laboratory 

CPI  coherent processing interval 

DC  direct current 

DFT  discrete Fourier transform 

DTFT  discrete-time Fourier transform 

FOPEN foliage penetration 

GPR  ground penetrating radar 

JRTFR  joint range-time-frequency representation 

PRF  pulse repetition frequency 

RF  radio frequency 

SIRE  Synchronous Impulse Reconstruction 

STFT  short-time Fourier transform 

STTW  sensing through the wall 

UWB   ultra-wideband  
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